▲共同第一作者:杨丝雨,丘荣星
通讯作者:庞元杰教授
通讯单位:华中科技大学
论文DOI:10.1021/acscatal.5c03184
我们采用加压CO来提高近表面CO浓度,从而引发催化剂动态重构,生成更多 Cu(111)/Cu(100)界面以增强C1-C2耦合。当在3 atm CO压力下进行CO还原反应并伴随原位催化剂重构时,Cu(111)/Cu(100)催化活性界面的活性比常压条件下高出1.7倍;在不同CO压力下,Cu(111)/Cu(100)界面密度与正丙醇选择性之间建立了定量相关性。
HF-Cu预催化剂在不同CO压强(1、3、10 atm)下进行重构的催化剂,在还原重建过程中,增加CO压力对形貌的影响很小,但Cu晶面尺寸和晶面类型的比例发生了变化。
12px;">(a-c) SEM of the HF-Cu-1, HF-Cu-3, and HF-Cu-10 catalysts after CORR, respectively. (d-f) TEM of the HF-Cu-1, HF-Cu-3, and HF-Cu-10, respectively. (g) Cu LMM of the HF-Cu-x catalyst. (h) XRD of the HF-Cu-x catalyst. (i) OHads of the HF-Cu-x catalyst in 1 M KOH.
进一步研究重构后的Cu晶面的空间分布,与HF-Cu-1相比,HF-Cu-3和HF-Cu-10具有更多个碎片和更小的晶面。在不同压力下量化单个Cu(111)和Cu(100)面的面积,HF-Cu-3和HF-Cu-10的Cu(111)小平面面积显著减少。这一观察结果表明,在高CO浓度下,Cu晶面会进行动态重构,从而产生更小、更碎片化的结构。我们进一步量化了不同压力下单位面积Cu(111)/Cu(100)界面的界面密度,HF-Cu-1、HF-Cu-3和HF-Cu-10的界面密度分别为26 μm–1,45 μm–1和36 μm–1,这意味着更多的Cu(111)/Cu(100)界面可以促进*C1和*C2中间体耦合。
(a-c) HRTEM images show facet information for the HF-Cu-1, HF-Cu-3, and HF-Cu-10, respectively. As visual aids, yellow and red dotted lines circle fragments of the Cu(100) and Cu(111) facets and green dotted lines highlight the interfaces between the (100) and (111) facets. FFTs of two typical areas are shown one for the (100) facet (A) and the other for the (111) facet (B). (d-f) The Cu(100) and Cu(111) facets on each sample are highlighted of the HF-Cu-1, HF-Cu-3, and HF-Cu-10, respectively. (g) Two typical profiles of integrated pixel intensity profiles labeled for Cu(111) (0.210 nm) and Cu (100) (0.180 nm). (h) Each sample from 6 individual HRTEM micrographs, covering the area of individual Cu(111) and Cu(100) facets from the HF-Cu-x. (i) Cu(111)/Cu(100) interfaces per unit area of HF-Cu-x.
随后研究了HF-Cu-x催化剂在不同CO压力下的CORR性能,当在-0.67 V的恒定电位下进行CORR实验时,在1至10 atm的压力范围内,正丙醇FE呈现火山形趋势,HF-Cu-3产正丙醇的FE为28%时达到峰值(即HF-Cu系列材料在3 atm的CO压力下表现出最高的正丙醇FE)。此外,FE正丙醇/FEC2+比率呈火山状趋势,从25%上升到39%,然后下降,HF-Cu-4实现最大FE正丙醇/FEC2+比率。这些发现表明,升高的CO压力通过加速*C1和 *C2的动力学偶联实现对正丙醇合成的偶联。此外,在MEA中进行了稳定性测试,-100mA cm-2的电流密度下,正丙醇的FE在最初的50 h内保持增加趋势,之后变得稳定,在80 h的持续时间内平均达到20%以上。HF-Cu-3催化剂仍然表现出良好的C1-C2耦合能力以增强C3产物的形成,这归因于重构的高密度Cu(111)/Cu(100)界面。
(a) FE for different products produced by HF-Cu-x under a range of pressure. (b) n-propanol partial current densities on different electrodes at various pressures and comparison of FEn‑propanol/FEC2+ratios on different electrodes at various potentials. (c) FE for different products produced by HF-Cu-3 under a range of potentials. (d) FE for different products produced by HF Cu-3 under a range of KOH concentrations. (e)The Cu(111)/(100) interface per area, measured from the HRTEM images of HF-Cu-1, HF-Cu-3 and HF-Cu-10, plotted with the FEn‑propanol/FEC2+ ratios. (f) FE for different products during CORR with HF-Cu-1 under 1 atm CO, HF-Cu-1 under 3 atm CO and HF-Cu-3 under 3 atm CO, respectively. The “1” in HF-Cu-1 denotes that the catalyst was electrochemically reduced and reconstructed under 1 atm of CO. (g) FEn‑propanol during 130 h operation of CORR at a constant current density of −100 mA cm−2
HF-Cu催化剂上的加压CO电还原通过C1–C2耦合动力学和CO诱导的动态表面重构协同增强。CO分压升高不仅会提高CO浓度,还会触发动态结构重组,在3个atm的CO压力下产生Cu(111)/(100)界面密度,是环境条件下的1.7倍。这种双重机制使正丙醇在-0.67 V时的FE为28%。这些发现表明,CO压力、界面位点密度和产物选择性之间的相关性为了解C-C耦合动力学提供了见解。未来的研究应优先探索这种压力调制重建策略在多碳产物合成中的普遍性,并优化气体扩散电极结构,以减轻高压下的析氢反应。