有机定制合成网

上海凯康镁科技有限公司 电话:021-51009326 化合物定制询价
专注化合物定制合成服务

Angew. Chem.:三元过渡金属中的轨道杂化助力高性能质子存储

金属离子载流子相比,质子(H⁺)具有摩尔质量极低、离子半径小、成本低廉及环境友好等优势,是实现高功率密度和长寿命储能的理想非金属电荷载体。然而,开发兼具高容量、高稳定性和快速动力学的质子存储正极材料仍面临巨大挑战。普鲁士蓝类似物(PBAs)虽具有开放的框架结构,但其本征电导率低,多金属协同与结构稳定性难以兼顾。近年来,过渡金属中的“d-p轨道杂化”与“d电子补偿”策略在能源转换领域展现出巨大潜力,但其在储能材料设计中的应用尚未得到充分重视。开发通过原子级电子结构调控来协同提升PBAs材料导电性、活性与稳定性的策略,对于构建高性能质子存储器件具有重要意义。

近日,华中科技大学卢兴教授(通讯作者)、张盼盼教授(通讯作者)等人报道了一种原子级 d-p 轨道杂化策略,用于调节过渡金属(V/Fe)的 d 轨道中心。通过原位共沉淀法合成了六氰合铁酸钒(VHCF)/氧化钌量子点(RuOxQDs)异质结构(VHCF-RuOxQDs)。Ru 的 4d 轨道与 VHCF 的 C≡N 2p 轨道(氰基)的 d-p 杂化诱导了 π 反馈,并为调节 V/Fe 的 d 电子创造了“电子高速公路”,使它们的 d 轨道中心发生偏移,从而实现连续的多电子转移。优化 d 电子结构降低了V5+ 的比例,从而减少了循环过程中的钒溶解。VHCF-RuOxQDs 正极在 1 A g−1 时具有 162 mAh g−1 的大容量,在 40 A g−1 时具有出色的倍率性能(127 mAh g−1),并且在超过 10000 次循环中具有超长的稳定性。当与 MoO3-MXene 阳极搭配时,这种非对称全器件在 1.3 KW Kg−1的功率密度下实现了 53 Wh Kg−1的高能量密度。

VHCF-RuOₓQDs通过原位共沉淀法合成,采用SEM、HR-TTEM、XRD、XPS、XAS等测试手段对其结构和形貌进行表征,结果表明RuOₓQDs均匀分散在VHCF框架中, Ru与C≡N 之间的电子传导,有效调控了V/Fe的d电子结构,形成了高效的“电子高速公路”。该异质结构具有优化的介孔结构和显著提升的比表面积,并且锚定RuOₓQDs不会破坏VHCF的原有晶体结构。(图1)

1

Figure 1. Synthesis and characterizations of VHCF–RuOxQDs. a) Schematic diagram of the “in situ co-precipitation synthesis” method for preparing VHCF–RuOxQDs and three-level magnified local structural diagram of VHCF and VHCF–RuOxQDs. b)–d) HR-TEM images of VHCF–RuOxQDs with different magnifications. e) and f) HAADF and EDS elemental mappings of VHCF–RuOxQDs. g) EXAFS and h) XANES spectra analyses of RuO2, Ru foil, RuOxQDs, and VHCF–RuOxQDs. i) FT-IR spectra of VHCF and VHCF–RuOxQDs. j) XPS valence band spectra of VHCF and VHCF–RuOxQDs. k) V 2p Fe 2p, and C 1s-Ru 3d XPS spectra of VHCF and VHCF–RuOxQDs.

构建了负载 RuOxQDs 的 VHCF 理论模型以及纯 VHCF 模型以作对比,然后基于密度泛函理论(DFT)计算了它们的差分电荷和态密度。计算结果表明,VHCF 中 Ru 的 d 轨道与 C≡N 的 p 轨道之间发生了 d-p 轨道杂化,从而产生了 π 反馈效应和电子从 Ru 向 VHCF 的转移,VHCF 的电子流入使 V/Fe 金属中心充满,激发了 C≡N-V 的 π 给电子效应,并抑制了 C≡N-Fe 的强电子排斥作用,进一步证明了通过外部原子级轨道杂化策略可以精确控制 PBAs 中过渡金属的 d 电子结构。

2

Figure 2. Orbital hybridization structure of VHCF–RuOxQDs. a) Conformational optimization of VHCF–RuOxQDs. b) Differential charge density distribution of VHCF–RuOxQDs. The yellow region represents charge gain and the cyan region represents charge loss. c) HOMO and LUMO energy level electron variation of side view of VHCF–RuOxQDs. d) Schematic representation of d-band centers of RuOxQDs and VHCF–RuOxQDs. e) PDOS of C 2p, N 2p, and Ru 4d in VHCF–RuOxQDs. PDOS of f) Fe 3d, g) V 3d in VHCF and VHCF–RuOxQDs. h) d-p orbital hybridization mechanism for enhancing the conductivity–activity–stability of VHCF–RuOxQDs.

通过三电极系统对VHCF-RuOxQDs电极在3 M H2SO4电解液中进行电化学性能测试,循环伏安(CV)曲线显示出多对清晰的氧化还原峰,对应于V3+/V4+、Fe2+/Fe3+和Ru(2x-δ)+/Ru2x+的连续多电子反应。通过动力学分析表明,其电荷存储机制主要由表面赝电容行为主导(贡献率高达96.1%)。该电极展现出优异的比容量(162 mAh g⁻¹ @ 1 A g⁻¹)和倍率性能(127 mAh g−1 @ 40 A g−1)。在40 A g−1的高电流密度下循环10000次后,容量保持率高达87.2%。(图3)

3

Figure 3. Electrochemical performance of VHCF–RuOxQDs electrodes. a) CV curves of VHCF, RuOxQDs, and VHCF–RuOxQDs electrodes at 5 mV s−1. b) CV curves at scan rates of 1–50 mV s−1 and c) GCD curves at different current densities from 1 to 40 A g−1 of the VHCF–RuOxQDs electrode. d) Specific capacities of VHCF, RuOxQDs, and VHCF–RuOxQDs electrodes calculated from the GCD curves as a function of current density. e) Log i versus log v plots for each redox peak in CV curves. f) Normalized contribution ratios of capacitive (orange) and diffusion-controlled (blue) currents as a function of scan rate. g) Nyquist plots of VHCF, RuOxQDs, and VHCF–RuOxQDs electrodes. The inset shows the magnified curves in the high-frequency range. h) Cycling stability and Coulombic efficiencies of VHCF and VHCF–RuOxQDs electrodes at 40 A g−1. The inset shows the first five and the last five GCD curves of the VHCF–RuOxQDs electrode.

为探明VHCF-RuOₓQDs的储能机理,我们对其进行了非原位XPS、XRD和原位FT-IR等测试,证实了V3+/V4+/V5+、Fe2+/Fe3+和Ru(2x-δ)+/Ru2x+作为氧化还原活性位点贡献了连续的赝电容行为。非原位XRD表明质子嵌入/脱出过程为高度可逆的非相变反应,仅伴随晶格的微小膨胀与收缩。结合DFT理论计算,Ru与C≡N的d-p轨道杂化形成了离域电子云,优化了电子传输通道,并将质子迁移能垒降低了0.7 eV,显著提升了质子扩散动力学。(图4)

4

Figure 4. Proton charge–storage mechanism of VHCF–RuOxQDs electrodes. a) GCD curve of the VHCF–RuOxQDs electrode at 0.5 A g−1 and the corresponding b) ex situ XRD patterns, c) in situ FT-IR spectra, and ex situ d) Fe 2p, e) V 2p, and f) Ru 3d XPS spectra of the VHCF–RuOxQDs electrode at different charge/discharge potentials. g) Three-dimensional distribution of the valence occupancies of V and Fe at different charge/discharge states. h) TEM image of the VHCF–RuOxQDs electrode after 100 charge/discharge cycles. i)–m) HR-TEM images of the VHCF–RuOxQDs electrode at different charge/discharge potentials. n) Schematic diagram of the changes in valence states of Fe, V, and Ru during charge/discharge process. o) Migratory energy barriers of protons in VHCF and VHCF–RuOxQDs. p) Schematic illustration of proton charge storage in the VHCF–RuOxQDs electrode during charge/discharge process.

为证明VHCF-RuOxQDs潜在的商业应用价值,以其为正极、MoO3-MXene为负极、3 M H2SO4为电解液,组装成非对称全质子存储器件。该器件拥有1.6 V的工作电压窗口,实现了53 Wh kg-1的高能量密度(功率密度为1.3 kW kg−1)。在20 A g−1的高电流密度下循环10000次后,容量保持率高达86.1%,展现出优异的倍率性能和长循环稳定性,具有巨大的实际应用潜力。(图5)

5

Figure 5. Electrochemical behavior of MoO3–MXene//VHCF–RuOxQD asymmetric full device. a) Schematic illustration of the full device based on VHCF–RuOxQDs cathode and MoO3–MXene anode. b) CV curves of MoO3–MXene anode, VHCF–RuOxQDs cathode, and MoO3–MXene//VHCF–RuOxQDs at 20 mV s−1. c) CV curves of MoO3–MXene//VHCF–RuOxQDs at different scan rates of 1–50 mV s−1. d) GCD curves of MoO3–MXene//VHCF–RuOxQDs at different current densities of 1–40 A g−1. e) Calculated specific capacities at different current densities. f) Ragone plots of MoO3–MXene//VHCF–RuOxQDs in comparison with other reported devices. g) Nyquist plots and corresponding magnified curves in the inset of MoO3–MXene//VHCF–RuOxQDs. h) Cycling stability and Coulombic efficiencies of MoO3–MXene//VHCF–RuOxQDs at 20 A g−1. The insets show the first five and last five GCD curves and an energy-supply demo for powering an LED array of “HUST” logo.

文信息

d-p Orbital Hybridization of Ternary Transition Metal Toward High-Performance Proton Storage

Wei Tu, Ke Mao, Dr. Ying Huang, Jundong Shao, Xuan Tian, Pengfei Xu, Prof. Sheng Yang, Prof. Faxing Wang, Prof. Yao Gao, Prof. Panpan Zhang, Prof. Xing Lu


Angewandte Chemie International Edition

DOI: 10.1002/anie.202513523


有机定制合成网 » Angew. Chem.:三元过渡金属中的轨道杂化助力高性能质子存储

咨询化合物定制合成与纳米材料 提供技术支持和售后服务

咨询定制合成 购买化合物产品
在线营销
live chat
cache
Processed in 0.022552 Second.