光催化因其在能量转换、环境修复以及有机合成等领域的广泛应用而引起了人们极大的研究兴趣。通常,光催化剂的选择性主要与其催化位点活性氧物种的调节有关。但活性氧物种的调控非常复杂,它通常受到许多因素,例如光吸收、光活化、电子转移和表面电荷寿命等影响。因此,活性氧物种的控制和调节是高效、高选择性光催化剂设计和优化的核控心科学问题之一。近年来,已有少量文献报道通过对光催化剂活性位点组成和结构的系列调,实现了对某一特定氧活性物种的可控调节。但对同一催化位点多个氧活性物种的复杂调控以及相关作用机制的研究却鲜有报道,这使得其成为了光催化研究中的一项重要的挑战性研究课题。
Scheme 1. Wavelength-dependent ROS regulation on T4EPE-Cu. Different from previous work focusing on the generation of a single ROS at a specific site accordingly, O2 adsorbed at Cu-alkynyl site can be regulated into different ROS under different photo-excitation wavelengths with a regulation range of 1.3~10.7 (1O2 : O2∙-). 聚集诱导发光(AIE)分子是一类具有较大的共轭结构且存在振动或旋转单元的独特发光分子。它们通常具有较强的光捕获能力、高的光激发效率以及良好的共振能量转移性能。如果能将AIE分子中的光生电荷进行有效分离,并抑制或关闭其辐射复合通道,则该类材料有望成为理想的光催化剂。此外,通常金属离子与有机配体间的配位和极化作用会为光生电荷的分离提供强大的驱动力。特别是d10金属离子,例如Cu,它可以与炔通过σ-或π-键形成具有较长三重态激发寿命的稳定有序配合物。这类炔-铜配合物具有丰富的光激发过程,例如:金属到配体的电荷转移、配体到金属的电荷转移以及配体到配体的电荷转移等。因此,它成为了构筑具有潜在光调控活性氧物种生成的理想研究模型。基于此,东北师范大学谭华桥教授,李阳光教授与苏州大学康振辉教授指导的博士生孙慧颖通过将四(4-乙炔基苯)乙烯与Cu2+在溶剂热下自组装,构筑了一类具有光调节氧活性物种活性的新型高效炔-铜光催化剂T4EPE-Cu。 在该体系中,瞬态光电压结合DFT理论计算证实炔-铜单元是主要的氧活化位点。在高能光(380 nm)激发下吸附的氧分子由于炔-铜单元的势阱效益倾向于获得光生电子,产生·O2-;相应地在低能光(600 nm)激发下,吸附的氧分子则与炔-铜单元发生共振能量转移生成1O2。基于此,该催化剂对α-松油烯的光催化氧化,其1O2产物与·O2-产物的比率在不同波段LED光的照射下从1.3 (380 nm)到10.7 (600 nm)之间的可控调节。此外,该催化剂还对光催化Glaser偶联以及苄胺氧化等需氧氧化反应展现出超高的光催化活性和选择性,其对应的转化率和产物选择性均超过99 %。 Figure 1. Morphology and structure of T4EPE and T4EPE-Cu. (a) TEM images of T4EPE-Cu. (b) STEM images of T4EPE-Cu. (c) Powder XRD patterns of the prepared samples and simulation of T4EPE-Cu by Materials studio software. (Inset: the structure diagram of {Cu-Cu} subunit). (d) The schematic structures of T4EPE-Cu. (e) High-resolution XPS of C 1s spectra in T4EPE and T4EPE-Cu. (f) Nitrogen adsorption-desorption isotherms of the prepared samples. In the ball-and-stick model of T4EPE-Cu, the gray, green and orange spheres represent C, H and Cu respectively. Figure 2. Charge separation performance on T4EPE and T4EPE-Cu. (a) Diffuse reflectance absorption spectra (inset: the optical photos of the prepared samples). (b) Band structure treated by Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional against Fermi level and PDOS of T4EPE-Cu. (inset: optimised geometric structures of T4EPE-Cu, the colour of ball-and-stick model refers to Figure 1). (c) Charge distribution pattern. (d) Transient photocurrent of different single band. (e) Solid fluorescence intensity spectra. Photoexcited wave-length is 380 nm. Figure 3. Experiment with theoretical calculations reveal photo-regulated ROS selective generation mechanism on T4EPE-Cu. (a) The products schematic diagram of photocatalytic oxidation a-terpinene. Reaction conditions: substrate (0.1 mmol), T4EPE-Cu catalyst (10 mg), CH3CN (5 mL), air. (b) Control experiments of photocatalytic oxidation a-terpinene. (c) Free radical capture experiments on α-terpinene oxidation. Na2S2O8, methanol, carotene, superoxide dismutase (SOD) and mannitol were added respectively as e-, h+, 1O2, O2∙- and ∙OH scavengers. Reaction conditions: a-terpinene (0.1 mmol), scavenger (0.1 mmol), catalyst (10 mg), CH3CN (5 mL), air, 420 nm, 2 h. (d) Conversion rate of a-terpinene oxidation under different photoexcitation wavelengths. TPV curves (inset: tmax and charge integral area represent the time and amount of charge extraction, respectively) under 355 nm light excitation (e) and 532 nm light excitation (f). (g) Calculated charge density difference in the presence and absence of an electron with the isosurfaces value of 0.012 e/Å3 (yellow represents charge accumulation). (h) The optimized oxygen adsorption model at Cu-alkynyl moiety (Model 3). The O-PDOS treated by Perdew-Burke-Ernzerhof (PBE) functional before (i) and after (j) adding an electron in Model 3. The positive and negative y values represent majority and minority spin states, respectively. The vertical dashed line shows Fermi level. 该工作为光催化中复杂活性物种的设计和调控提供了新思路,也为基于AIE机理设计高效光催化剂开辟了新途径。 论文信息 Cu-Bridged Tetrakis(4-ethynylphenyl)ethene Aggregates with Photo-Regulated 1O2 and O2∙- Generation for Selective Photocatalytic Aerobic Oxidation Huiying Sun, Zhongling Lang, Yingnan Zhao, Xinyu Zhao, Tianyu Qiu, Qiang Hong, Kaiqiang Wei, Huaqiao Tan, Zhenhui Kang, Yangguang Li Angewandte Chemie International Edition DOI: 10.1002/anie.202202914